
Some Hierarchies for the Communication
Complexity Measures of Cooperating Grammar

Systems

Juraj Hromkovic 1, Jarkko Kari ~, Lila Kari 2

Abst rac t . We investigate here the descriptional and the computational com-
plexity of parallel communicating grammar systems (PCGS). A new descrip-
tional complexity measure - the communication structure of the PCGS -
is introduced and related to the communication complexity (the number of
communications). Several hierarchies resulting from these complexity mea-
sures and some relations between the measures are established. The results
are obtained due to the development of two lower-bound proof techniques for
PCGS. The first one is a generalization of pumping lemmas from formal lan-
guage theory and the second one reduces the lower bound problem for some
PCGS to the proof of lower bounds on the number of reversals of certain
sequential computing models.

1 I n t r o d u c t i o n

Parallel Communicating Grammar Systems (PCGS) represent one of the several
at tempts that have been made for finding a suitable model for parallel computing
(see [4] for an algebraic and [6], [1] for an au tomata theoretical approach). PCGS
have been introduced in [12] as a grammatical model in this aim, trying to involve
as few as possible non-syntactic components.

A PCGS of degree n consists of n separate usual Chomsky grammars, working
simultaneously, each of them starting from its own axiom; furthermore, each gram-
mar i can ask from the grammar j the string generated so far. The result of this
communication is that grammar i includes in its own string the string generated by
grammar j , and that grammar j returns to its axiom and resumes working. One
of the grammars is distinguished as a master grammar and the terminal strings
generated by it constitute the language generated by the PCGS.

Many variants of PCGS can be defined, depending on the communication pro-
tocol (see [8]), on the type of the grammars involved (see [12], [9]), and so on. In
[12], [9], [11], [10] and [8], [14] various properties of PCGS have been investigated,
including the generative power, closure under basic operations, complexity, and effi-
ciency. In this paper we restrict ourselves to the study of PCGS composed of regular
grammars. As no confusion will arise, in the sequel we will use the more general term
PCGS when referring to these particular PCGS consisting of regular grammars.

1 Department of Mathematics and Computer Science, University of Paderborn, 4790
Paderborn, Germany

2 Academy of Finland and Department of Mathematics, University of Turku, 20500 Turku,
Finland, emM1- santean@sara.cc.utu.fi

496

The most investigated complexity measure for PCGS has been the number of
grammars the PCGS consists of, which is clearly a descriptional complexity mea-
sure. Here we propose for investigation two further complexity measures. One is the
communication structure of the PCGS (the shape of the graph consisting of the com-
munication links between the grammars) which can be considered as an alternative
descriptional complexity measure to the number of grammars. This measure may
be essential for the computational power of the PCGS, as showed also by results
established in this paper. Here we consider mostly the following graphs as communi-
cation structures: linear arrays, rings, trees and directed acyclic graphs. The second
complexity measure proposed here is the number of communications between the
grammars during the generation procedure. This measure is obviously a computa-
tional complexity measure which is considered as a function of the length of the
generated word. Here we investigate these complexity measures and the relations
between them.

First, in Section 3, we relate these complexity measures to some sequential com-
plexity measures. It is shown that PCGS with tree communications structure and
f (n) communication complexity can be simulated in real-time by one-way nondeter-
ministic multicounter machines with at most 2 f (n) reversals. PCGS with acyclic
communication structure can be simulated in linear time by nondeterministic off-line
multitape Turing machines.

The first simulation result is used in Section 4 to prove some lower bounds on
the communication complexity of tree-PCGS. The lower bounds are achieved due to
the modification of the lower bound proof technique on the number of reversals of
multicounter machines developed in [5], [2].

The consequences are not only some hierarchies of communication complexity
but also the fact that for tree-PCGS the increase of descriptional complexity cannot
compensate for some small decreases of communication complexity.

Section 5, devoted to descriptional complexity measures, involves pumping lem-
mas for PCGS with tree structure, ring structure and with acyclic structures. This
enables to obtain several strong hierarchies on the number of grammars of such
PCGS.

2 D e f i n i t i o n s a n d N o t a t i o n s

We assume the reader familiar with basic definitions and notations in formal lan-
guage theory (see [13]) and we specify only some notions related to PCGS.

For a vocabulary V, we denote by V* the free monoid generated by V under the
operation of concatenation, and by ~ the null element. For z E V*, Izl is the length
of x and if K is a set, I~ lg denotes the number of occurrences of letters of K in x.

All the grammars appearing in this paper are assumed to be regular, that is,
with productions of the form A ~wB, and A ~w, where A ,B are nonterminals
and w is a terminal word or the empty word.

Def in i t ion 1 A PCGS of degree n, n > 1, is an n-luple

71" ---~ (G1, G 2 , . . . , Gn),

where

497

- Gi = (VN,i, S , Si,Pi), 1 < i < n, are regular Chomsky grammars satisfying
Vjv,i f'l ,F, = 0 for all i E {1 ,2 , . . . , n};

- there ezists a set K C_ {Q1, Q2, . . . , Qn} of special symbols, called communication
symbols, K C Uin=l VN, i, used in communications as will be shown below.

The communication protocol in a PCGS r is determined by its communication
graph. The vertices of this directed graph are labeled by G1, . . . , Gn. Moreover, for
i r j there exists an arc starting with Gi and ending with Gj in the communication
graph iff the communication symbol Qj belongs to the nonterminal vocabulary of
Gi.

An n-tuple (x l , . . . , xn) where xi E ~U*(VN,I U ,~), 1 < i < n, is called a configu-
ration. The elements xi, 1 < i < n, will be called components of the configuration.

We say that the configuration (x l , . . . , xn) directly derives (Y l , . . . , Yn) and write
(x l , . . . , xn)==C'(yl,..., Yn), if one of the next two cases holds:

(i)

(it)

IT, ilK = 0 for all i, 1 < i < n, and, for each i, either zi contains a nonterminal
and x i ~ y i in Gi or xi is a terminal word and xi = Yi.
IXilK > 0 for some i, 1 < i < n.
For each such i we write x: = ziQj, where zi E S*.

(a) If I=jl " = 0 then yi = zixj and yj = Sj.
(b) If [XjlK > 0 then Yi = zi.
For all the remaining indexes l, that is, for those indexes l, 1 < l < n, for which
xt does not contain communication symbols and QI has not occurred in any of
thex l , l < i < n, we put yt = xl.

Informally, an n-tuple (Xl, ~2, . . . , x ,) directly yields (Yl,Y2;. . . , Y,) if either no
communication symbol appears in z l , . . . , zn and we have a componentwise deriva-
tion, x i ~ y l in Gi, for each i, 1 < i < n, or communication symbols appear and we
perform a communication step, as these symbols impose: each occurrence of Qij in
xl is replaced by xij, provided zij does not contain further communication symbols.

A derivation consists of rewriting steps and communication steps.
The derivation relation, denoted ==:~*, is the reflexive transitive closure of the

relation ===~. The language generated by the system consists of the terminal strings
generated by the master grammar, G1, regardless the other components (terminal
or not).

Def in i t ion 2 L(Tr) : {c~ E ~*] (S l , . . . , Sn)=:::=:~*(o/, ~2, . - " , ~ n)] "

Of special interest are the centralized PCGS, denoted by c-PCGS. In this case,
only the master grammar can ask for the strings generated by the others. The com-
munication graph is therefore a tree (star) consisting of a father and its sons.

Def in i t ion 3 A dag-PCGS (tree-, two-way array-, one-way array-, two-way ring-,
one-way ring- PCGS) is a PCGS whose communication graph is a directed acyclic
graph (respectively tree, two-way linear array, one-way linear array, two-way ring,
one-way ring).

498

Denote by z - PCGS,~ the class of PCGS's of degree n whose communication
graph is of type z, where x E {c, dug, tree, two-way array, one-way array, two-way
ring, one-way ring}. Moreover, denote by s - PCGS,~) the family of languages
generated by x - PCGS's of degree n whose communication graph is of type z,
where z is as before.

If x denotes one of the above communication graphs, x - PCGSn(f (m)) will
denote the class of PCGS's with communication graph of shape x and using at
most f(rn) communication steps to generate any word of length m. (Note that
0 < f (m) <_ m.) As above, f_ . (x-PCGS,(f (m))) will denote the family of languages
generated by PCGS of this type.

Let us give now a simple example that shows the generative power of PCGS.

Example 1. Let r be the PCGS 7r = (G1, G2, G3) where

G1 = ({5:1, S~, $2, $3, Q2, Q3}, {a, b, c}, 5:1, (S1-----~abc,
$1 ~ a2b2c 2 , $1 -----,a363c3, $1 ~aS~, S~ ---~aS~,

S~---*a3Q2,S2)b2Q3, S3 ~c}),
a~ = ({S2},{b},S2,{S2 ,bS~}),

as = {c}, &, {&

This is a regular centralized PCGS of degree 3 and it is easy to see that we have

L(Tr) = {anbncnln >_ 1},

which is a non-context-free language. []

Let us now informally define one-way nondeterministic multicounter machines.
The formal definition can be found in [3]. A multicounter machine consists of a
finite state control, a one-way reading head which reads the input from the input
tape, and a finite number of counters. We regard a counter as an arithmetic register
containing an integer which may be positive or zero. In one step, a multicounter
machine may increment or decrement a counter by 1. The action or the choice of
actions of the machine is determined by the input symbol currently scanned, the
state of the machine and the sign of each counter: positive or zero. A reversal is a
change from increasing to decreasing contents of a counter or viceversa. The machine
starts with all counters empty and accepts if it reaches a final state.

3 Characterization of PCGS by Sequential Complexity
M e a s u r e s

In this section we shall characterize the families of languages generated by PCGS by
some sequential complexity classes. These characterizations will depend on the com-
munication structure of PCGS and on the communication complexity of PCGS. This
enables us to obtain some hierarchies for the communication complexity measures
of PCGS as consequences of some hierarchies for sequential complexity measures.

Let us start first with the characterization of tree-PCGS by linear-time nonde-
terministic multicounter machines.

499

L e m m a l . Let ~ be a tree-PCGSm(f(n)) for some positive integer m and for some
function f : N ~N. Then there exists a linear-lime nondeterministic (m - 1)-
co n er a toma o. M reeog.izi.g with 2 f(n) reversals and f(n) zero es s.

Proof. Let ~r = (G 1 , . . . , G m) be a tree-PCGSm(f(n)). The simulation of ~r by a
real-time 1MC(m - 1) machine M is based on the following idea. The finite control
of M ~is used to store the description of all regular grammars G x , . . . , G m and to
simulate always the rewriting of one of the grammars which is responsible for the
input part exactly scanned.

M uses its counters C2, C3 , . . . , C~ in the following way which secures that none
of the grammars G x , . . . , Gm is used longer than possible in actual situations (con-
figurations). In each configuration of M and for each i E { 2 , . . . , m } the number
c(Ci) stored in Ci is the difference between the number of the rewriting steps of Gi
already simulated by M and the number of simulated rewriting steps of the father
of Gi in the communication tree (this means that if Gi is asked by its father to give
its generated word then this word is generated by Gi in at most c(Ci) steps).

Now let us describe the simulation. M nondeterministically simulates the work
of ~ by using its finite control to alternatively simulate the work of G1,.. . , Gm and
checking in real-time whether the generated word is exactly the word laying on the
input tape. The simulation starts by simulating the work of G1 and with the simul-
taneous comparison of the generated terminals with the corresponding terminals on
the input tape. During this procedure M increases after each simulated rewriting
step of G1 the content of all counters assigned to the sons of G1 and does not change
the content of any Other counter. This simulation procedure ends when a commu-
nication nonterminal Qi (for some i) is generated. Then M starts to simulate the
generation procedure of Gi from the initial nonterminal of Gi. Now, in each simula-
tion step of M the content of the counter Ci is decreased by 1 and the contents of
M1 counters of the sons of Gi are increased by 1. If Gi rewrites its nonterminal in a
terminal word, then M halts and it accepts the input word iff the whole input word
has been read. If Ci is empty and Gi has produced a nonterminal A in the last step
then the control is given to the father of Gi (Ga) which continues to rewrite from the
nonterminal A (if A is not a nonterminal of GI, then M rejects the input). If Gi has
produced a communication symbol Qj for some j , then the son Gj of Gi is required
to continue to generate the input word. Now the simulation continues recursively as
described above.

Obviously, the number of reversals is bounded by 2 f(n) and the number of ze-
rotests is bounded by f(n) because the content of a counter Ci starts to be decreased
iff the communication symbol Qi was produced.

Clearly, if there are no rules A ~B, where both A and B are nonterminals, then
M works in real-time. If such rules may be used, then the simulation works in linear
time because there exists a constant d such that for each word w E L(~r) there exists
a derivation of w which generates in each d steps at least one terminal symbol. []

Realizing the facts that each 1-multicounter-machine can be simulated in the
same time by an off-line multitape Turing machine, and that the contents of counters
of M from Lemma 1 is in O(Iwl) for any input w, we get the following result.

T h e o r e m 2. f_,(tree-PCGS) C NTIME(n)N NSPA CE(log~ n).

500

The following theorem shows that there is a simulation of dag-PCGS by an off-
line nondeterministic multitape Turing machine, working in linear time.

T h e o r e m 3. s dag-PCGS) C NTIME(n).

Finally, we let open the problem whether the general PCGS can be simulated
nondeterministically in linear time. Some effort in this direction has been made in
[15], [7], where some PCGS with cycles in communication structures and with some
additional restrictions are simulated nondeterministically in linear time.

Another interesting question is whether s C NLOG. If YES, then each
PCGS can be simulated deterministically in polynomial time because NLOGC P.
We only know as a consequence of Theorem 2 that s is included in P.

4 C o m m u n i c a t i o n C o m p l e x i t y H i e r a r c h i e s

In this section we shall use the simulation result from Lemma 1 to get some strong
hierarchies on the number of communication steps for tree-PCGS and its subclasses.
Following Lemma 1 we have that L E / : (t ree - PCGSm(f(n))) implies L = L(M)
for a real-time nondeterministic (m - 1)-counter automaton M with 2 f(n) reversals.
Following the proof of Lemma 1 we see that M has the following property.

(i) For any computation part D of M containing no reversal, the counters can
be divided into three sets, $1 = {the counters whose contents is never changed in
D}, $2 = {the counters whose content is increased in D}, and $3 = {the counters
whose content is decreased in D}, such that for each step of D one of the following
conditions holds:

1. either no counter changes its content in the given step, or
2. the counters from $1 do not change their contents, each counter in $2 increases

its content by 1, and each counter in $3 decreases its content by 1.

So, the property (i) of D means that, for any subpart D ~ of D, there exists a
constant d ~ such that the volume of the change of the content of any counter in D ~
is either +d ~, or - d ~, or 0.

Now we will use (i) to get the following result.
Let L = {ailbi'ai2b i2 ...aikblkcl k ~ 1,ij E N for j ~ {1 , . . . ,k}} .

L e m m a 4 . L E s U,n~N/: (t ree-PCGSm(f(n))) for any f(n) r

Following Lemma 4 we get the following hierarchies on the communication com-
plexity.

T h e o r e m h . For any function f : N ,N, f(n) r 9(n), and any m e N, m > 2:

s C s

s C s

s C s

501

Besides Theorem 5, Lemma 5 claims a more important result namely that no
increase of the number of grammars and no increase of communication links in tree
communication structure (i.e. no increase of the descriptional complexity under the
tree communication structure) can compensate for the decrease of the number of
communication steps (i.e. computational complexity).

Now we shall deal with PCGS whose communication complexity is bounded by
a constant. Let

Lk = {aiabiaai2bia+i~. . .aikbil+i2+'"+ikc[ij E N for j = 1, . . . ,k},

for any k E N.

L e m m a 6 . L} E s - UmeN/~ (trce-PCCSm(k - 1)).

T h e o r e m T . For any positive integer k and any X E { c, tree, one-way array} we
have

s - 1)) C s and

Um~Nfc (X-PCGSm(k - 1)) C U m ~ N s

An open problem is to prove hierarchies for more complicated communication
structures. Some results in this direction have been recently established in [7].

5 P u m p i n g L e m m a s a n d I n f i n i t e H i e r a r c h i e s

In this section descriptional complexity measures of PCGS are investigated. For
PCGS with communication structures tree and dag, strong hierarchies on the number
of grammars are proved. To obtain them, some pumping lemmas as lower bound
proof techniques are established. In the case of PCGS with communication structures
arrays and rings, no such pumping lemmas are known. However, the infinity of the
hierarchies of such PCGS on the number of grammars is obtained as a consequence of
the following stronger result. There exist languages that can be generated by two-way
array-PCGS, two-way ring-PCGS and one-way ring-PCGS but cannot be generated
by any PCGS of smaller degree, regardless of the complexity of its communication
graph. This also shows that in some cases the increase in the descriptional complexity
(the number of grammars the PCGS consists of) cannot be compensated by any
increase in the complexity of the communication graph.

Before entering the proof of the pumping lemmas, an ordering of the vertices in
a directed acyclic graph is needed.

P r o p o s i t i o n 8. Let G = (X ,F) be a dag, where X is the set of vertices and F the
set of arcs. We can construct a function f : X ~ N such that for all z, y E X we
have:

f (z) >_ f (y) implies that there is no path from y to z in the graph G.

502

The classical proof of the pumping lemma for regular languages is based on
finding, along a sufficiently long derivation, two "similar" sentential forms. "Similar"
means that the two sentential forms contain the same nonterminal, a fact that allows
us to iterate the suhderivation between them arbitrarily many times.

We will use an analogous procedure for dag-PCGS. The difference will be that,-
due to the communications We need a stronger notion of "similarity". The first
request will obviously be that the correspondent components of the two "similar"
configurations contain the same nonterminal. Moreover, we will require that, in case
communications are involved, also the terminal strings are identical.

Def in i t ion 4 Let cl = (x lA1 , . . . , x ,~An) and c2 = (y tB1 , . . . , y ,~Bn) be two con-
figurations where xi, Yi are terminal strings and Ai, Bi are nonterminals or A, for
l < i < n .

The configurations are called equivalent, and we write Cl = c2 if Ai = Bi for each
i , l < i < n .

Clearly, - is an equivalence relation.
Let us consider a derivation according to ~r, D : c : : = ~ * c l ~ * c ~ * d , where cl

and c~ are defined as in the previous definition.

Def in i t ion 5 The configurations cl and c2 are called D-similar iff

(i) cl and c2 are equivalent,
(it) if a communication symbol Qi, 1 < i < n, is used in the derivation D between

cl and c2, then xi = Yi.

We are now in position to prove the pumping lemma for dag-PCGS. For the sake
of clarity, the proof is split in two parts. The first result claims that in any sufficiently
long derivation according to a dag-PCGS we can find two "similar" configurations.

L e m m a 9 . Let rc be a dag-PCGS. There exists a constant q E N such that in any
derivation D according to ~r whose length is at least q, there are two D-similar
configurations.

The following pumping lemma shows that any sufficiently long word generated
by a dag-PCGS can be decomposed such that, by simultaneously pumping a number
of its subwords, we obtain words that still belong to the language. Due to the dag
structure of the communication graph which allows a string to be read by more
than one grammar (a vertex can have more fathers), the number of the pumped
subwords can be arbitrarily large. However, the number of distinct pumped subwords
is bounded by the degree of the dag-PCGS.

L e m l n a 10. (P u m p i n g l e m m a for d a g - P C G S) Let L be a language generated
by a dag-PCGS of degree n > 1. There exists a natural number N such that every
word ot E L whose length is greater than N can be decomposed as

O: ~-- O~lfl I . . .Ol rn]~mOtrn+l ,

where fll ~5 A for every i, 1 < i < m, and 1 <_card{fit,... ,tim} <_ n. Moreover, for
all s >__ 0 the word

belongs to L.

503

Proof. Let r = (G I , . . . , G ,) be a dag-PCGS, where Gi = (VN,i,.U, Si, Pi). Denote
by z the maximum length of the right sides of all productions.

C la im. The length of any component of a configuration produced by ~r start ing
from the axiom in k derivation steps is at most z �9 2 k-1 .

The claim will be proved by induction on k.
If k = 1 then the claim obviously holds as ~r can produce in one step only words

of length at most z.
k ~ k + 1. Let us consider a derivation according to 7r which starts from the

axiom and has k + 1 steps. In the (k + 1)th step, the length of any component a is:

I~l < [~'l + max{z, I'~'1} < 2-I'~'1 = z - 2 ~.

where]c~ r] denotes the maximum length of any component of a configuration that
can be obtained after k derivation steps, start ing from the axiom. The proof of the
claim is complete.

If we choose now N = z . 2 q-1 , where q is the number defined in Lemma 9 and a
word a whose length is greater than N, then a minimal derivation D of c~ contains
at least q steps.

According to the Lemma 9, during this derivation occur at least two D-similar
configurations cl and c2 as shown below:

($1,32, . . . , Sn) =::::~* cl = (xlA1, z2A2, . . . , znAn)
=:::~* c~ = (zlzlA1, z2z2A2,.. . , z , z , A ,)
==** (,~,).

If all the strings zizi which occur in c2 and become later subwords of c~ have the
property zi = A then D is not minimal. Indeed, if this would be the case, the
subderivation between cl and c2 could be eliminated - a contradiction with the
minimality of D.

Consequently, there exist il ,ik E {1 , . . . ,n}, such that

O~ ~ O~lXil Zil Ot2Xi2 Zi2 . . . Ot k ~ik Zik Oek+l

zij ~)% 1 < j < k, and :gijzij, 1 < j < k, are exactly the terminal strings that have
appeared in the components with the corresponding index of c~. Observe that we
do not necessarily have ij 7s i v for j ~ p, 1 < j, p < k. Indeed, because of possible
communications, the same string Z i j Z i i originating from the / j - componen t of c2 can
appear several times in ~.

By iterating the subderivation between the two D-similar configurations cl and
c2 s times, for an arbitrary s, we obtain a valid derivation for

a(') = '~1=i, z~ 1 a2=i2 z~2.. , c~k =i~ z~ ak+x.

The word a (~) therefore belongs to L for all natural numbers s > 0. The derivation
between cl and c 2 can also be omit ted and therefore also ce(~ belongs to L.

Note that we do not give an upper bound for k. This follows from the fact tha t
in a dag a vertex can have more fathers. Consequently, a component zizi can be
read by more than one grammar and thus appear more than once in a . However, the

5O4

number of different words zir is at most n. Indeed when iterating the subderivation
c 1 ~ * c 2 , we can only pump the zi's already existing in some components of c2, that
is, at most n different ones. As explained before, because of the communications
steps that occur after c2, some of the words z~ can appear several times in (~(s). []

An analogous pumping lemma can be obtained for tree-PCGS, but in this case
the number of pumped positions is bounded by the number of grammars of the
tree-PCGS.

L e m m a l l . (P u m p i n g l e m m a for t r e e - P C G S) L e t L be a language generated
by a tree-PCGS. There exists a natural number N such that every word o~ E L whose
length is greater than N can be decomposed as

o~ = alfl l . . . C~mflmC~m+l,

where 1 ~_ m <_ n, I~ Ys A for every i, 1 < i < rn, and the word

o, l Z ~ . . . o , , , , Z ~ , o , , , , + l

belongs to L for all s > O.

As a consequence of Lemma 10, we can obtain a language that can he generated
by a tree-PCGS but cannot be generated by any dag-PCGS of smaller degree.

T h e o r e m 12. For all n > 1, f .(tree-PCGSn) - f~(dag-PCGS,~_l) ~ O.

Proof. Consider the" language Ln 1..~+1 2+2 = t~l a 2 . . . a~+"l k >_ 0}. []

The following infinite hierarchies are obtained as consequences of the preceding
result.

C o r o l l a r y 13. The hierarchy {L(dag-PCGSn)},~>_I is infinite.

C o r o l l a r y 14. The hierarchy {f~(trce-PCGS~,)}n>_~ is infinite.

In the remaining part of this section we will consider some PCGS with com-
munication structures for which no pumping lemmas are known, namely two-way
array, two-way ring and one-way ring-PCGS. The following theorem provides a lan-
guage that can be generated by a two-way array-PCGS but cannot be generated by
any PCGS of smaller degree. This shows that in some cases the increase in descrip-
tional complexity cannot be compensated by an increase in the complexity of the
communication structure.

T h e o r e m 15. For all m >_ 1,

s two-way array-PCGSm+l) - ~.(two-way array-PCGSm) ys O.

Proof. Consider the language

Lr~ = {a~a~. . . a~rnl n >_ 1}.

We can show a stronger result than the one stated in the theorem. For all m > 1
there exists the language L,, that can be generated by a two-way array PCGS of
degree m + 1 but cannot be generated by any PCGS of smaller degree. []

505

Coro l l a ry 16. The hierarchy { s two-way array-PCGSn) }n>_.~ is infinite.

C o r o n a r y 17. The hierarchy {s ring-PCGSn)}n>_.l is infinite.

The language used in the proof of Theorem 15 can be used to show that the
hierarchy of one-way ring-PCGS, relative to the number of the grammars in the
PCGS, is infinite. When constructing the one-way ring-PCGS which generates the
language, special care has to be payed to synchronization problems.

T h e o r e m 18. For all m > 1,

f_.(one-way ring-PCGSm+l) - ~.(one-way ring-PCGSm) • 0.

Coro l l a ry 19. The hierarchy {[:(one-way ring-PCGSn)}n>l is infinite.

The study of hierarchies on the number of grammars for PCGS with other com-
munication structures (planar graphs, hypercubes, etc) remains open.

R e f e r e n c e s

1. K.Culik, J.Gruska, A.Salomaa. Systolic trellis automata. International Journal of Com-
puter Mathematics 15 and 16(1984).

2. P.Duris, J.Hromkovic: Zerotesting bounded multicounter machines. Kybernetika
23(1987), No.l, 13-18.

3. S.Ginsburg: Algebraic and Automata-Theoretic Properties of Formal Languages. North-
Holland Publ.Comp., Amsterdam 1975.

4. C.A.R.Hoare. Communicating sequential processes. Comm. ACM. 21 vol. 8 (1978).
5. J.Hromkovic: Hierarchy of reversal bounded one-way multicounter machines. Kybernet-

ica 22(1986), No.2, 200-206.
6. J.Kari. Decision problems concerning cellular automata. University of Turku, PhD The-

sis (1990).
7. D.Pardubska. The communication hierarchies of parallel communicating systems. Pro-

ceedings of IMYCS'92, to appear.
8. Gh.Paun. On the power of synchronization in parallel communicating grammar systems.

Stud. Cerc. Matem. 41 vol.3 (1989).
9. Gh.Paun. Parallel communicating grammar systems: the context-free case. Found. Con-

trol Engineering 14 vol.1 (1989).
10. Gh.Paun. On the syntactic complexity of parallel communicating grammar systems.

Kybernetika, 28(1992), 155-166.
11. Gh.Paun, L.Santean. Further remarks on parallel communicating grammar systems.

International Journal of Computer Mathematics 35 (1990).
12. Gh.Paun, L.Santean. Parallel communicating grammar systems: the regular case. Ann.

Univ. Buc. Ser. Mat.-Inform. 37 vol.2 (1989).
13. A.Salomaa. Formal Languages. Academic Press New York London (1973).
14. L.Santean, J.Kari:The impact of the number of cooperating grammars on the generative

power, Theoretical Computer Scienoe, 98, 2(1992), 249-263.
15. D.Wierzchula: Systeme yon parallellen Grammatiken (in German). Diploma thesis,

Dept. of Mathematics and Computer Science, University of Paderborn, 1991.

