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Abst rac t .  We investigate here the descriptional and the computational com- 
plexity of parallel communicating grammar systems (PCGS). A new descrip- 
tional complexity measure - the communication structure of the PCGS - 
is introduced and related to the communication complexity (the number of 
communications). Several hierarchies resulting from these complexity mea- 
sures and some relations between the measures are established. The results 
are obtained due to the development of two lower-bound proof techniques for 
PCGS. The first one is a generalization of pumping lemmas from formal lan- 
guage theory and the second one reduces the lower bound problem for some 
PCGS to the proof of lower bounds on the number of reversals of certain 
sequential computing models. 

1 I n t r o d u c t i o n  

Parallel Communicating Grammar  Systems (PCGS) represent one of the several 
at tempts that  have been made for finding a suitable model for parallel computing 
(see [4] for an algebraic and [6], [1] for an au tomata  theoretical approach). PCGS 
have been introduced in [12] as a grammatical model in this aim, trying to involve 
as few as possible non-syntactic components. 

A PCGS of degree n consists of n separate usual Chomsky grammars, working 
simultaneously, each of them starting from its own axiom; furthermore, each gram- 
mar i can ask from the grammar j the string generated so far. The result of this 
communication is that grammar i includes in its own string the string generated by 
grammar j ,  and that grammar j returns to its axiom and resumes working. One 
of the grammars is distinguished as a master grammar and the terminal strings 
generated by it constitute the language generated by the PCGS. 

Many variants of PCGS can be defined, depending on the communication pro- 
tocol (see [8]), on the type of the grammars involved (see [12], [9]), and so on. In 
[12], [9], [11], [10] and [8], [14] various properties of PCGS have been investigated, 
including the generative power, closure under basic operations, complexity, and effi- 
ciency. In this paper we restrict ourselves to the study of PCGS composed of regular 
grammars. As no confusion will arise, in the sequel we will use the more general term 
PCGS when referring to these particular PCGS consisting of regular grammars. 
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The most investigated complexity measure for PCGS has been the number of 
grammars the PCGS consists of, which is clearly a descriptional complexity mea- 
sure. Here we propose for investigation two further complexity measures. One is the 
communication structure of the PCGS (the shape of the graph consisting of the com- 
munication links between the grammars) which can be considered as an alternative 
descriptional complexity measure to the number of grammars. This measure may 
be essential for the computational power of the PCGS, as showed also by results 
established in this paper. Here we consider mostly the following graphs as communi- 
cation structures: linear arrays, rings, trees and directed acyclic graphs. The second 
complexity measure proposed here is the number of communications between the 
grammars during the generation procedure. This measure is obviously a computa- 
tional complexity measure which is considered as a function of the length of the 
generated word. Here we investigate these complexity measures and the relations 
between them. 

First, in Section 3, we relate these complexity measures to some sequential com- 
plexity measures. It  is shown that PCGS with tree communications structure and 
f (n )  communication complexity can be simulated in real-time by one-way nondeter- 
ministic multicounter machines with at most 2 f (n )  reversals. PCGS with acyclic 
communication structure can be simulated in linear time by nondeterministic off-line 
multitape Turing machines. 

The first simulation result is used in Section 4 to prove some lower bounds on 
the communication complexity of tree-PCGS. The lower bounds are achieved due to 
the modification of the lower bound proof technique on the number of reversals of 
multicounter machines developed in [5], [2]. 

The consequences are not only some hierarchies of communication complexity 
but also the fact that for tree-PCGS the increase of descriptional complexity cannot 
compensate for some small decreases of communication complexity. 

Section 5, devoted to descriptional complexity measures, involves pumping lem- 
mas for PCGS with tree structure, ring structure and with acyclic structures. This 
enables to obtain several strong hierarchies on the number of grammars of such 
PCGS. 

2 D e f i n i t i o n s  a n d  N o t a t i o n s  

We assume the reader familiar with basic definitions and notations in formal lan- 
guage theory (see [13]) and we specify only some notions related to PCGS. 

For a vocabulary V, we denote by V* the free monoid generated by V under the 
operation of concatenation, and by ~ the null element. For z E V*, Izl is the length 
of x and if K is a set, I~ lg  denotes the number of occurrences of letters of K in x. 

All the grammars appearing in this paper are assumed to be regular, that is, 
with productions of the form A ~wB, and A ~w, where A ,B  are nonterminals 
and w is a terminal word or the empty word. 

Def in i t ion  1 A PCGS of degree n, n > 1, is an n-luple 

71" ---~ (G1,  G 2 , . . . ,  Gn), 

where 
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- Gi = (VN,i, S ,  Si,Pi), 1 < i < n, are regular Chomsky grammars satisfying 
Vjv,i f'l ,F, = 0 for all i E {1 ,2 , . . . ,  n}; 

- there ezists a set K C_ {Q1, Q2, . . . ,  Qn} of special symbols, called communication 
symbols, K C Uin=l VN, i, used in communications as will be shown below. 

The communication protocol in a PCGS r is determined by its communication 
graph. The vertices of this directed graph are labeled by G1, . . . ,  Gn. Moreover, for 
i r j there exists an arc starting with Gi and ending with Gj in the communication 
graph iff the communication symbol Qj belongs to the nonterminal vocabulary of 
Gi. 

An n-tuple ( x l , . . .  , xn) where xi E ~U*(VN,I U ,~), 1 < i < n, is called a configu- 
ration. The elements xi, 1 < i < n, will be called components of the configuration. 

We say that  the configuration ( x l , . . . ,  xn) directly derives (Y l , . . . ,  Yn) and write 
( x l , . . . ,  xn)==C'(yl,..., Yn), if one of the next two cases holds: 

(i) 

(it) 

IT, ilK = 0 for all i, 1 < i < n, and, for each i, either zi contains a nonterminal 
and x i ~ y i  in Gi or xi is a terminal word and xi = Yi. 
IXilK > 0 for some i, 1 < i < n. 
For each such i we write x: = ziQj, where zi E S*. 

(a) If I=jl " = 0 then yi = zixj and yj = Sj. 
(b) If [XjlK > 0 then Yi = zi. 
For all the remaining indexes l, that is, for those indexes l, 1 < l < n, for which 
xt does not contain communication symbols and QI has not occurred in any of 
thex l ,  l < i < n, we put yt = xl. 

Informally, an n-tuple (Xl, ~2, . . .  , x , )  directly yields (Yl,Y2;. . . ,  Y,) if either no 
communication symbol appears in z l , . . . ,  zn and we have a componentwise deriva- 
tion, x i ~ y l  in Gi, for each i, 1 < i < n, or communication symbols appear and we 
perform a communication step, as these symbols impose: each occurrence of Qij in 
xl is replaced by xij, provided zij does not contain further communication symbols. 

A derivation consists of rewriting steps and communication steps. 
The derivation relation, denoted ==:~*, is the reflexive transitive closure of the 

relation ===~. The language generated by the system consists of the terminal strings 
generated by the master grammar, G1, regardless the other components (terminal 
or not). 

Def in i t ion  2 L(Tr) : {c~ E ~*] ( S l , . . . ,  Sn)=:::=:~*(o/, ~2, . - " , ~ n ) ] "  

Of special interest are the centralized PCGS, denoted by c-PCGS. In this case, 
only the master grammar can ask for the strings generated by the others. The com- 
munication graph is therefore a tree (star) consisting of a father and its sons. 

Def in i t ion  3 A dag-PCGS (tree-, two-way array-, one-way array-, two-way ring-, 
one-way ring- PCGS) is a PCGS whose communication graph is a directed acyclic 
graph (respectively tree, two-way linear array, one-way linear array, two-way ring, 
one-way ring). 
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Denote by z - PCGS,~ the class of PCGS's  of degree n whose communication 
graph is of type z, where x E {c, dug, tree, two-way array, one-way array, two-way 
ring, one-way ring}. Moreover, denote by s  - PCGS,~) the family of languages 
generated by x - PCGS's of degree n whose communication graph is of type z, 
where z is as before. 

If x denotes one of the above communication graphs, x - PCGSn( f (m) )  will 
denote the class of PCGS's with communication graph of shape x and using at 
most f(rn) communication steps to generate any word of length m. (Note that 
0 < f (m)  <_ m.) As above, f_ . (x-PCGS,( f (m)) )  will denote the family of languages 
generated by PCGS of this type. 

Let us give now a simple example that shows the generative power of PCGS. 

Example 1. Let r be the PCGS 7r = (G1, G2, G3) where 

G1 = ({5:1, S~, $2, $3, Q2, Q3}, {a, b, c}, 5:1, (S1-----~abc, 
$1 ~ a2b2c 2 , $1 -----,a363c3, $1 ~aS~, S~ ---~aS~, 

S~---*a3Q2,S2 )b2Q3, S3 ~c}), 
a~ = ({S2},{b},S2,{S2 ,bS~}), 

as  = {c}, &, {& 

This is a regular centralized PCGS of degree 3 and it is easy to see that  we have 

L(Tr) = {anbncnln >_ 1}, 

which is a non-context-free language. [] 

Let us now informally define one-way nondeterministic multicounter machines. 
The formal definition can be found in [3]. A multicounter machine consists of a 
finite state control, a one-way reading head which reads the input from the input 
tape, and a finite number of counters. We regard a counter as an arithmetic register 
containing an integer which may be positive or zero. In one step, a multicounter 
machine may increment or decrement a counter by 1. The action or the choice of 
actions of the machine is determined by the input symbol currently scanned, the 
state of the machine and the sign of each counter: positive or zero. A reversal is a 
change from increasing to decreasing contents of a counter or viceversa. The machine 
starts with all counters empty and accepts if it reaches a final state. 

3 Characterization of PCGS by Sequential Complexity 
M e a s u r e s  

In this section we shall characterize the families of languages generated by PCGS by 
some sequential complexity classes. These characterizations will depend on the com- 
munication structure of PCGS and on the communication complexity of PCGS. This 
enables us to obtain some hierarchies for the communication complexity measures 
of PCGS as consequences of some hierarchies for sequential complexity measures. 

Let us start  first with the characterization of tree-PCGS by linear-time nonde- 
terministic multicounter machines. 
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L e m m a l .  Let ~ be a tree-PCGSm(f(n)) for some positive integer m and for some 
function f : N ~N. Then there exists a linear-lime nondeterministic ( m -  1)- 
co n er a toma o. M reeog.izi.g with 2 f(n) reversals and f(n) zero es s. 

Proof. Let ~r = ( G 1 , . . . , G m )  be a tree-PCGSm(f(n)). The simulation of ~r by a 
real-time 1MC(m - 1) machine M is based on the following idea. The finite control 
of M ~is used to store the description of all regular grammars G x , . . . , G m  and to 
simulate always the rewriting of one of the grammars which is responsible for the 
input part  exactly scanned. 

M uses its counters C2, C3 , . . . ,  C~ in the following way which secures that  none 
of the grammars G x , . . . ,  Gm is used longer than possible in actual situations (con- 
figurations). In each configuration of M and for each i E { 2 , . . . , m }  the number 
c(Ci) stored in Ci is the difference between the number of the rewriting steps of Gi 
already simulated by M and the number of simulated rewriting steps of the father 
of Gi in the communication tree (this means that  if Gi is asked by its father to give 
its generated word then this word is generated by Gi in at most c(Ci) steps). 

Now let us describe the simulation. M nondeterministically simulates the work 
of ~ by using its finite control to alternatively simulate the work of G1,.. . ,  Gm and 
checking in real-time whether the generated word is exactly the word laying on the 
input tape. The simulation starts by simulating the work of G1 and with the simul- 
taneous comparison of the generated terminals with the corresponding terminals on 
the input tape. During this procedure M increases after each simulated rewriting 
step of G1 the content of all counters assigned to the sons of G1 and does not change 
the content of any Other counter. This simulation procedure ends when a commu- 
nication nonterminal Qi (for some i) is generated. Then M starts to simulate the 
generation procedure of Gi from the initial nonterminal of Gi. Now, in each simula- 
tion step of M the content of the counter Ci is decreased by 1 and the contents of 
M1 counters of the sons of Gi are increased by 1. If Gi rewrites its nonterminal in a 
terminal word, then M halts and it accepts the input word iff the whole input word 
has been read. If Ci is empty and Gi has produced a nonterminal A in the last step 
then the control is given to the father of Gi (Ga) which continues to rewrite from the 
nonterminal A (if A is not a nonterminal of GI,  then M rejects the input). If Gi has 
produced a communication symbol Qj for some j ,  then the son Gj of Gi is required 
to continue to generate the input word. Now the simulation continues recursively as 
described above. 

Obviously, the number of reversals is bounded by 2 f(n) and the number of ze- 
rotests is bounded by f(n) because the content of a counter Ci starts to be decreased 
iff the communication symbol Qi was produced. 

Clearly, if there are no rules A ~B, where both A and B are nonterminals, then 
M works in real-time. If such rules may be used, then the simulation works in linear 
time because there exists a constant d such that  for each word w E L(~r) there exists 
a derivation of w which generates in each d steps at least one terminal symbol. [] 

Realizing the facts that  each 1-multicounter-machine can be simulated in the 
same time by an off-line multitape Turing machine, and that  the contents of counters 
of M from Lemma 1 is in O(Iwl) for any input w, we get the following result. 

T h e o r e m  2. f_,( tree-PCGS) C NTIME(n)N NSPA CE(log~ n). 
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The following theorem shows that there is a simulation of dag-PCGS by an off- 
line nondeterministic multitape Turing machine, working in linear time. 

T h e o r e m  3. s dag-PCGS) C NTIME(n). 

Finally, we let open the problem whether the general PCGS can be simulated 
nondeterministically in linear time. Some effort in this direction has been made in 
[15], [7], where some PCGS with cycles in communication structures and with some 
additional restrictions are simulated nondeterministically in linear time. 

Another interesting question is whether s C NLOG. If YES, then each 
PCGS can be simulated deterministically in polynomial time because NLOGC P. 
We only know as a consequence of Theorem 2 that  s is included in P. 

4 C o m m u n i c a t i o n  C o m p l e x i t y  H i e r a r c h i e s  

In this section we shall use the simulation result from Lemma 1 to get some strong 
hierarchies on the number of communication steps for tree-PCGS and its subclasses. 
Following Lemma 1 we have that L E / : ( t ree  - PCGSm(f(n))) implies L = L(M) 
for a real-time nondeterministic ( m -  1)-counter automaton M with 2 f(n) reversals. 
Following the proof of Lemma 1 we see that M has the following property. 

(i) For any computation part D of M containing no reversal, the counters can 
be divided into three sets, $1 = {the counters whose contents is never changed in 
D}, $2 = {the counters whose content is increased in D}, and $3 = {the counters 
whose content is decreased in D}, such that for each step of D one of the following 
conditions holds: 

1. either no counter changes its content in the given step, or 
2. the counters from $1 do not change their contents, each counter in $2 increases 

its content by 1, and each counter in $3 decreases its content by 1. 

So, the property (i) of D means that,  for any subpart D ~ of D, there exists a 
constant d ~ such that the volume of the change of the content of any counter in D ~ 
is either +d ~, or - d  ~, or 0. 

Now we will use (i) to get the following result. 
Let L = {ailbi'ai2b i2 ...aikblkcl k ~ 1,ij E N for j ~ {1 , . . . ,k}} .  

L e m m a 4 .  L E s U,n~N/: ( t ree-PCGSm(f(n) ) )  for any f(n) r 

Following Lemma 4 we get the following hierarchies on the communication com- 
plexity. 

T h e o r e m h .  For any function f : N ,N, f(n) r 9(n), and any m e N, m > 2: 

s C s 

s C s 

s C s 
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Besides Theorem 5, Lemma 5 claims a more important result namely that no 
increase of the number of grammars and no increase of communication links in tree 
communication structure (i.e. no increase of the descriptional complexity under the 
tree communication structure) can compensate for the decrease of the number of 
communication steps (i.e. computational complexity). 

Now we shall deal with PCGS whose communication complexity is bounded by 
a constant. Let 

Lk = {aiabiaai2bia+i~. . .aikbil+i2+'"+ikc[ ij E N for j = 1, . . .  ,k}, 

for any k E N. 

L e m m a 6 .  L} E s  - UmeN/~ ( trce-PCCSm(k - 1)). 

T h e o r e m T .  For any positive integer k and any X E { c, tree, one-way array} we 
have 

s  - 1)) C s  and 

Um~Nfc (X-PCGSm(k  - 1)) C U m ~ N s  

An open problem is to prove hierarchies for more complicated communication 
structures. Some results in this direction have been recently established in [7]. 

5 P u m p i n g  L e m m a s  a n d  I n f i n i t e  H i e r a r c h i e s  

In this section descriptional complexity measures of PCGS are investigated. For 
PCGS with communication structures tree and dag, strong hierarchies on the number 
of grammars are proved. To obtain them, some pumping lemmas as lower bound 
proof techniques are established. In the case of PCGS with communication structures 
arrays and rings, no such pumping lemmas are known. However, the infinity of the 
hierarchies of such PCGS on the number of grammars is obtained as a consequence of 
the following stronger result. There exist languages that can be generated by two-way 
array-PCGS, two-way ring-PCGS and one-way ring-PCGS but cannot be generated 
by any PCGS of smaller degree, regardless of the complexity of its communication 
graph. This also shows that in some cases the increase in the descriptional complexity 
(the number of grammars the PCGS consists of) cannot be compensated by any 
increase in the complexity of the communication graph. 

Before entering the proof of the pumping lemmas, an ordering of the vertices in 
a directed acyclic graph is needed. 

P r o p o s i t i o n  8. Let G = (X ,F )  be a dag, where X is the set of vertices and F the 
set of arcs. We can construct a function f : X ~ N such that for  all z,  y E X we 
have: 

f ( z )  >_ f ( y )  implies that there is no path from y to z in the graph G. 
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The classical proof of the pumping lemma for regular languages is based on 
finding, along a sufficiently long derivation, two "similar" sentential forms. "Similar" 
means that the two sentential forms contain the same nonterminal, a fact that allows 
us to iterate the suhderivation between them arbitrarily many times. 

We will use an analogous procedure for dag-PCGS. The difference will be that,- 
due to the communications We need a stronger notion of "similarity". The first 
request will obviously be that the correspondent components of the two "similar" 
configurations contain the same nonterminal. Moreover, we will require that, in case 
communications are involved, also the terminal strings are identical. 

Def in i t ion  4 Let cl = ( x lA1 , . . . , x ,~An)  and c2 = ( y tB1 , . . . , y ,~Bn)  be two con- 
figurations where xi, Yi are terminal strings and Ai,  Bi are nonterminals or A, for  
l < i < n .  

The configurations are called equivalent, and we write Cl = c2 if Ai = Bi for  each 
i , l < i < n .  

Clearly, - is an equivalence relation. 
Let us consider a derivation according to ~r, D : c : : = ~ * c l ~ * c ~ * d ,  where cl 

and c~ are defined as in the previous definition. 

Def in i t ion  5 The configurations cl and c2 are called D-similar iff 

(i) cl and c2 are equivalent, 
(it) if a communication symbol Qi, 1 < i < n, is used in the derivation D between 

cl and c2, then xi = Yi. 

We are now in position to prove the pumping lemma for dag-PCGS. For the sake 
of clarity, the proof is split in two parts. The first result claims that in any sufficiently 
long derivation according to a dag-PCGS we can find two "similar" configurations. 

L e m m a 9 .  Let rc be a dag-PCGS. There exists a constant q E N such that in any 
derivation D according to ~r whose length is at least q, there are two D-similar 
configurations. 

The following pumping lemma shows that any sufficiently long word generated 
by a dag-PCGS can be decomposed such that, by simultaneously pumping a number 
of its subwords, we obtain words that still belong to the language. Due to the dag 
structure of the communication graph which allows a string to be read by more 
than one grammar (a vertex can have more fathers), the number of the pumped 
subwords can be arbitrarily large. However, the number of distinct pumped subwords 
is bounded by the degree of the dag-PCGS. 

L e m l n a  10. ( P u m p i n g  l e m m a  for  d a g - P C G S )  Let L be a language generated 
by a dag-PCGS of degree n > 1. There exists a natural number N such that every 
word ot E L whose length is greater than N can be decomposed as 

O: ~-- O~lfl I . . .Ol rn]~mOtrn+l ,  

where fll ~5 A for  every i, 1 < i < m, and 1 <_card{fit,... ,tim} <_ n. Moreover, for 
all s >__ 0 the word 

belongs to L. 
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Proof. Let r = ( G I , . . . ,  G , )  be a dag-PCGS,  where Gi = (VN,i,.U, Si, Pi). Denote 
by z the maximum length of the right sides of all productions.  

C la im.  The length of  any component  of a configuration produced by ~r start ing 
from the axiom in k derivation steps is at most  z �9 2 k-1 . 

The claim will be proved by induction on k. 
If k = 1 then the claim obviously holds as ~r can produce in one step only words 

of length at most z. 
k ~ k + 1. Let us consider a derivation according to 7r which starts from the 

axiom and has k + 1 steps. In the (k + 1)th step, the length of  any component  a is: 

I~l < [~'l + max{z,  I'~'1} < 2-I'~'1 = z - 2  ~. 

where ]c~ r] denotes the maximum length of any component of a configuration that  
can be obtained after k derivation steps, start ing from the axiom. The proof  of the 
claim is complete. 

If we choose now N = z .  2 q-1 , where q is the number defined in Lemma 9 and a 
word a whose length is greater than N,  then a minimal derivation D of c~ contains 
at least q steps. 

According to the Lemma 9, during this derivation occur at least two D-similar 
configurations cl and c2 as shown below: 

($1,32, . . . ,  Sn) =::::~* cl = (xlA1, z2A2, . . . ,  znAn) 
=:::~* c~ = (zlzlA1, z2z2A2,.. .  , z , z , A , )  
==** ( ,~, .  . . . . .  ).  

If all the strings zizi which occur in c2 and become later subwords of c~ have the 
property zi = A then D is not minimal. Indeed, if this would be the case, the 
subderivation between cl and c2 could be eliminated - a contradiction with the 
minimality of D. 

Consequently, there exist il . . . .  ,ik E {1 , . . .  ,n},  such that  

O~ ~ O~lXil Zil Ot2Xi2 Zi2 . . .  Ot k ~ik  Zik Oek+l 

zij ~ )% 1 < j < k, and :gijzij, 1 < j < k, are exactly the terminal strings that  have 
appeared in the components with the corresponding index of c~. Observe that  we 
do not necessarily have ij 7s i v for j ~ p, 1 < j, p < k. Indeed, because of possible 
communications, the same string Z i j Z i i  originating from the / j - componen t  of c2 can 
appear several times in ~. 

By iterating the subderivation between the two D-similar configurations cl and 
c2 s times, for an arbitrary s, we obtain a valid derivation for 

a(') = '~1=i, z~ 1 a2=i2 z~2.. ,  c~k =i~ z~ ak+x. 

The word a (~) therefore belongs to L for all natural  numbers s > 0. The derivation 
between cl and c 2 can also be omit ted and therefore also ce(~ belongs to L. 

Note that  we do not give an upper bound for k. This follows from the fact tha t  
in a dag a vertex can have more fathers. Consequently, a component  zizi can be 
read by more than one grammar  and thus appear more than once in a .  However, the 
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number of different words zir is at most n. Indeed when iterating the subderivation 
c 1 ~ * c 2 ,  we can only pump the zi's already existing in some components of c2, that 
is, at most n different ones. As explained before, because of the communications 
steps that occur after c2, some of the words z~ can appear several times in (~(s). [] 

An analogous pumping lemma can be obtained for tree-PCGS, but in this case 
the number of pumped positions is bounded by the number of grammars of the 
tree-PCGS. 

L e m m a l l .  ( P u m p i n g  l e m m a  for  t r e e - P C G S ) L e t  L be a language generated 
by a tree-PCGS. There exists a natural number N such that every word o~ E L whose 
length is greater than N can be decomposed as 

o~ = alfl l  . . .  C~mflmC~m+l, 

where 1 ~_ m <_ n, I~ Ys A for every i, 1 < i < rn, and the word 

o, l Z ~  . . . o , , , , Z ~ ,  o , , , , +  l 

belongs to L for all s > O. 

As a consequence of Lemma 10, we can obtain a language that can he generated 
by a tree-PCGS but cannot be generated by any dag-PCGS of smaller degree. 

T h e o r e m  12. For all n > 1, f .(tree-PCGSn) - f~(dag-PCGS,~_l) ~ O. 

Proof. Consider the" language Ln 1..~+1 2+2 = t~l a 2 . . . a~+"l  k >_ 0}. [] 

The following infinite hierarchies are obtained as consequences of the preceding 
result. 

C o r o l l a r y  13. The hierarchy {L(  dag-PCGSn)},~>_I is infinite. 

C o r o l l a r y  14. The hierarchy {f~(trce-PCGS~,)}n>_~ is infinite. 

In the remaining part of this section we will consider some PCGS with com- 
munication structures for which no pumping lemmas are known, namely two-way 
array, two-way ring and one-way ring-PCGS. The following theorem provides a lan- 
guage that can be generated by a two-way array-PCGS but cannot be generated by 
any PCGS of smaller degree. This shows that in some cases the increase in descrip- 
tional complexity cannot be compensated by an increase in the complexity of the 
communication structure. 

T h e o r e m  15. For all m >_ 1, 

s two-way array-PCGSm+l) - ~.(two-way array-PCGSm) ys O. 

Proof. Consider the language 

Lr~ = {a~a~. . .  a~rnl n >_ 1}. 

We can show a stronger result than the one stated in the theorem. For all m > 1 
there exists the language L,, that can be generated by a two-way array PCGS of 
degree m + 1 but cannot be generated by any PCGS of smaller degree. [] 
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Coro l l a ry  16. The hierarchy { s  two-way array-PCGSn ) }n>_.~ is infinite. 

C o r o n a r y  17. The hierarchy {s ring-PCGSn)}n>_.l is infinite. 

The language used in the proof of Theorem 15 can be used to show that the 
hierarchy of one-way ring-PCGS, relative to the number of the grammars in the 
PCGS, is infinite. When constructing the one-way ring-PCGS which generates the 
language, special care has to be payed to synchronization problems. 

T h e o r e m  18. For all m > 1, 

f_.(one-way ring-PCGSm+l) - ~.(one-way ring-PCGSm) • 0. 

Coro l l a ry  19. The hierarchy {[:(one-way ring-PCGSn)}n>l is infinite. 

The study of hierarchies on the number of grammars for PCGS with other com- 
munication structures (planar graphs, hypercubes, etc) remains open. 
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